

Spectrophotometric determination of Zn²⁺ with a synthetic Schiff base of 4-chloro-2-(quinolone-8-yliminometyl)-phenol

Orawan Kritsunankul^{1*}, Bussaba Boonseng², Ratanon Chotima², Benjaporn Pramote¹ and Kanokporn Panchana²

¹Department of Chemistry and Research center for academic excellence in petroleum, petrochemical and advanced materials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand

²Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand

*e-mail: orawant@nu.ac.th

The complex formation between a synthesized Schiff base (SB) of 4-chloro-2-(quinolone-8-yliminometyl)-phenol and various cations of K, Mg²⁺, Al³⁺, Cr³⁺, Mn²⁺, Fe²⁺, Co²⁺, Zn²⁺, Ce³⁺ and Pb²⁺ in ethanol was firstly investigated by spectrophotometric method. These absorption spectra were evaluated with respect to Schiff base concentration and various pH of the color formation reactions. It was found that the complexation reaction of Zn²⁺ and SB in ethanol was completed in the wavelength range of 370-500 nm at pH 5.0, and resulted the maximum wavelength at 440 nm. Optimization of parameters of the Zn²⁺ complex formation was carry out, such as the stability of SB solution, the equilibrium time of color formation, the ratio of metal to ligand, the SB concentration and the calibration range. Under the optimum conditions, the proposed method was successfully applied to the determination of Zn²⁺ in synthetic samples.

Keywords Schiff base; Spectrophotometric method; Zn²⁺; Synthetic samples